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Heavy-Ion Beam Dynamics in the RIA Accelerators

� Acceleration of multiple-charge state heavy-ion beams.
� The RIA Driver Linac:

- Accelerating-Focusing Lattice of the SC linac;
- Beam Dynamics optimization and simulation;
- SRIM transport of 85 MeV/u uranium beam through 15 mg/cm2

carbon foil. Properties of the energy-angle distribution.
- Post-stripper beam transport and acceleration in ECL and TSL.
- Beam collimation.
- Beam measurements at 10.5 MeV/u, comparison with SRIM 
calculations.
- BD simulations of the beam with larger �sigma� in energy 
distribution.

� Summary.
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Driver Linac Architecture

Front End

RFQ LEBTMEBT

Low-β

High-β

Medium-β

Beam energy:
Uranium 400 MeV/u
Protons   990 MeV
Beam power 400 kW
Length ~400 m

Total voltage 1.4 GV
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SC Cavities for the RIA Driver 
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Main sources of longitudinal emittance growth&halo formation:

- Coupling of r-z motion in the RFQ.
- Multiplicity of charge states (different synchronous phase, 

frequency jumps: 57.5 MHz � 345 MHz/805 MHz);
- Random errors of rf field phase and amplitude; 
- Passage through the stripper, energy straggling.

Main sources of transverse emittance growth&halo formation:
- Space charge, higher-order distortions in the LEBT;
- Coherent oscillations of multi-q beams due to the 

misalignment of focusing elements;
- Mismatch of multi-q beam; 
- Higher-order distortions in the post-stripper transport 

systems;
- Passage through the stripper, scattering.
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Additional sources:

- Nonlinear motion in the long. phase space due to the lattice;
- Higher-order terms in the beam transport systems due to the 

charge spread ∆q/q;
- Dipole component of magnetic field in some types of SC 

resonators; 
- Quadrupole component of defocusing electric field in some 

types of SC resonators;
- Single particle parametric resonance should be avoided.
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Detailed BD simulations are necessary for:

a) Cost-effective design of the linac;
b) Quantitative comparison of beam quality in different

options of the linac.

Simulation codes

� TRACE, 

� TRANSPORT, 

� COSY, GIOS; 
� DESRFQ.

TRACKv32

DYNAMION

Optimization codes

CST Microwave Studio; 
SIMION;

DESRFQ.

Electromagnetic Field 
calculations
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Multi-Component Ion Beam Simulation Code TRACKv32:

Ø multiparticle simulation of multiple component ion beams 

in 6D phase space;
Ø 3D electromagnetic fields from MWS in rectangular mesh;

Ø Fringing fields of magnets and multipoles are included;

Ø Realistic fields in solenoids;

Ø Integration of equations of motion by Runge-Kutta method; 

Ø Misalignments and random errors are included;
Ø Space charge of multiple component ion beams;

Ø Beam passage through stripping foils&films;
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TRACK elements:
� Any type of accelerating resonator with realistic 3D fields;

� Solenoids;

� Bending magnets with fringing fields; 
� Multipoles (quadrupoles, sextupoles, � ) with fringing fields;

� RFQs;

� Multi-harmonic bunchers;

� Axial-symmetric electrostatic lenses;

� Change of electric potential (entrance/exit of HV deck);
� �Thin� beam steering elements;

� Beam collimations � element �slit�.
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Driver Linac

Low-β

High-β

Medium-β

10 MeV/u 85 MeV/u

Beam Beam



13Pioneering
Science and
Technology HALO’03  beam halo  in heavy-ion superconducting linac

Driver Linac with Triple Spoke Resonators

First SRF cavity Last SRF cavityStripper 1 Stripper 2

Beam envelope (100% particles)
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Phase space plots before the stripper, q=70,71,72,73,74 (W=85 MeV/u)

Phase space plots after the stripper, q=88,89,90,91  (W=81 MeV/u)
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SRIM results, 106 particles

monochromatic input beam
Win=85 MeV/u
∆W= 3.29 MeV/u
σW = 17.5 keV/u
σT = 0.5 mrad

15 mg/cm2 Carbon foil
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SRIM = Stopping Range of Ions in Matter
by J.F. Ziegler, J.P. Biersack and U. Littmark



25Pioneering
Science and
Technology HALO’03  beam halo  in heavy-ion superconducting linac

70000 72000 74000 76000 78000 80000 82000
1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1
In

te
ns

ity
 (

re
l. 

un
its

)

Energy (KeV/u)

Energy distribution function



26Pioneering
Science and
Technology HALO’03  beam halo  in heavy-ion superconducting linac

SRIM results, 106 particles, angle= 22 yx ′+′

3σanglex3σenergy
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Transverse acceptance of the post-stripper MOS
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Transverse acceptance of the post-stripper MOS



29Pioneering
Science and
Technology HALO’03  beam halo  in heavy-ion superconducting linac

80400 80600 80800 81000 81200 81400 81600
0.1

1

10

100

1000

C
ou

nt

Energy (keV/u)

Generation of the particle distribution in TRACK, includes 
initial long. emittance, foil thickness fluctuation and SRIM 
results.

Beam core distribution in TRACK (Gaussian component)
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SRIM results, 106 particlesSRIM results, 106 particles
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100,000 particles represent halo in the TRACK code: 
0.3441% of total uranium beam intensity
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Beam energy spectrum of the halo particles 
(TRACK). ΕL=  29 π keV/u-nsec
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10.5 MeV/ uranium beam through C/Be foils
(measurements by J. Nolen and E. Kanter)
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input beam

SRIM, monochromatic
input beam, 5%  thcikness
fluctuation

593 µµg/cm2 Carbon
σσ=0.665 MeV
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SRIM, 5%  thickness
fluctuation, input long.
Emittance = 10 π keV/u-nsec

Measured

593 µg/cm2 Carbon
σ=0.665 MeV
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593 µg/cm2 Carbon
Measurement SRIM Simulation
σcp/q =0.55 MeV σ cp/q =0.064 MeV

σ W =2.87 keV/u 
52 µg / cm2 C and 220 µg /cm2 Be

Measurement SRIM Simulation
σcp/q =0.27 MeV σ cp/q =0.04 MeV

σ W =1.77 keV/u 

Extrapolation of energy straggling from 2 set of measurements:

This is larger than SRIM data by a factor 6.7 !

MeVFlucBeCqcp 43.0206.027.055.0 222222
/ =−−=−−= σσσσ

±5% thickness fluc.
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Elliptical Cavity Linac, ϕS=-30o

f=805 MHz

Triple Spoke Linac, ϕS=-25o

f=345 MHz

Longitudinal acceptance

Four charge state beam emittance q=88,89,90,91
Beam simulation to the entrance of the high-β section ( no errors)



39Pioneering
Science and
Technology HALO’03  beam halo  in heavy-ion superconducting linac

Longitudinal phase space of halo particles 
before the stripper and along the MOS
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ECL, input beam is Gaussian with 3σSRIM
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TSL, input beam is Gaussian with 5σSRIM
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ECL, input beam is Gaussian with 5σSRIM
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Distribution of particle losses along the high-β section of the ECL
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Beam losses in the high energy section of the driver linac
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Emittance growth factor in the RIA driver linac 
based on the Triple Spoke Cavities

Charge states simulated

low-β medium-β high-β 

28-29 70-74 88-91

No errors, end-to-end simulation of 106 multi-particles

Horizontal Vertical Longitudinal

Rms 1.5 1.5 4.9

Total (100%) 4.8 4.9 35
With errors, simulation of 104 multi-particles in 

200 linacs with random errors and misalignments, transverse
corrective steering is applied

Rms 1.8 1.9 9.5

Total (100%) 5.8 6.8 35
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Summary

� SRIM data: strong correlation between the low energy particles 
and scattering for large angles after the passage of the stripper.

� Effective beam collimation can be applied along the post-stripper 
MOS. 

� Both designs of the driver linac, the ECL and TSL does not have 
any losses in the high energy section if  SRIM results are correct.

� There are no losses in the TSL even for 5⋅σSRIM. This linac is 
�beam-loss-free�.

� More careful measurements of the beam energy spread and 
transverse emittance (or scattering angles) are required for 
uranium beam at 85 MeV/u.


